Root pressure and beyond: energetically uphill water transport into xylem vessels?
نویسنده
چکیده
The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects.
منابع مشابه
Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels.
Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K(+) activity (A(K+) ) within ∼1 min after stress onset. At this time,...
متن کاملRoot resistance to cavitation is accurately measured using a centrifuge technique.
Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through me...
متن کاملAn interpretation of some whole plant water transport phenomena.
A treatment of water flow into and through plants to the evaporating surface of the leaves is presented. The model is driven by evaporation from the cell wall matrix of the leaves. The adsorptive and pressure components of the cell wall matric potential are analyzed and the continuity between the pressure component and the liquid tension in the xylem established. Continuity of these potential c...
متن کاملA case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling.
Recent work has suggested that the large earlywood vessels of ring-porous trees can be extraordinarily vulnerable to cavitation making it necessary that these trees maintain a consistent and favorable water status. We compared cavitation resistance, vessel refilling, transport capacity and water status in a study of ring-porous Quercus gambelii Nutt. (oak) and diffuse-porous Acer grandidentatum...
متن کاملVulnerability of Protoxylem and Metaxylem Vessels to Embolisms and Radial Refilling in a Vascular Bundle of Maize Leaves
Regulation of water flow in an interconnected xylem vessel network enables plants to survive despite challenging environment changes that can cause xylem embolism. In this study, vulnerability to embolisms of xylem vessels and their water-refilling patterns in vascular bundles of maize leaves were experimentally investigated by employing synchrotron X-ray micro-imaging technique. A vascular bun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 65 2 شماره
صفحات -
تاریخ انتشار 2014